Axiom Developer Guide

Axiom Developer Guide
1221

Licensed to the Apache Software Foundation (ASF) under one or more contributor license agreements. See the NOTICE file distributed with this
work for additional information regarding copyright ownership. The ASF licenses this file to you under the Apache License, Version 2.0 (the
"License"); you may not use this file except in compliance with the License. Y ou may obtain a copy of the License at

http://www.apache.org/licenses/LI CENSE-2.0

Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS |S' BASIS, WITHOUT
WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions
and limitations under the License.

http://www.apache.org/licenses/LICENSE-2.0

Table of Contents

1. Working with the AXiOm SOUICE COURcceuuuniiiiii ettt 1
Importing the Axiom source code iNt0 ECliPSEovvvveiiiiiii e 1

I 1o [P PP PP PTPPPPTP 1

Uit tESE OrgaNiZaHIONcevtieiiiii ettt et e e e e e e 1

Testing Axiom with different SLAX implementationsSooevvvviiniiiiinneiii e, 2

A B L= o | o RSP TUP PP 3
General design prinCipleS @and QOIScoeuuuuiiiiiii et 3

Li f ecycl eManager design (AXiOM 1.3) ..coeeuiiiiiiiiieiiie e 3
Issues with the Li f ecycl eManager APIin AXiOmM 1.2.Xccoeviiiiiiinneiiiineeecenennn. 3

Cleanup strategy for temporary fileScoouuuiiiiiiii e 4

3. REIBASE PIOCESS ... cieiti ettt ettt 6
REIEASE PIrEPAIELIONc.vuieeiiii ettt ettt et 6
PrEIEOUISITES ... ettt ettt e et e e e s 8
REIBASE ...t e 8
POSE-TEIEASE @CLIOMNS ...ttt ettt 11
REFEIENCES ...t et e e e e 11

AL APPENTIX ettt ettt e e et e et et eeeaba e aee 12
Installing IBM'S JDK 0N DEDIAN LINUX ...covvuiiiiiiiiiiiiii e 12

List of Figures

3.1. Package dependencies fOr r944680c.uuieiiiiiieiiii ettt
3.2. Package dependencies fOr 1939984coouuii i

Chapter 1. Working with the Axiom
source code

Importing the Axiom source code into Eclipse

Use the following steps to import the Axiom source code into Eclipse Neon (4.6.0):
1. Install AJDT using the following update site:
http://downl oad.eclipse.org/tool §/aj dt/46/dev/update
Only the "AspectJ Development Tools" feature is required.
2. Install Workspace Mechanic using the following update site:
https://alfsch.github.io/eclipse-updates/workspacemechanic

3. Import the Axiom sources as "Existing Maven Projects’ into a new Eclipse workspace. M 2Eclipse
will propose to install additional Maven plugin connectors; make sure that you install them all.

4. Configure Workspace Mechanic using the filesunder et ¢/ wor kspacemechani ¢ and accept the
proposed preference changes.

Testing

Unit test organization

Historically, all unit tests were placed in the axi ont t est s project. One specific problem with thisis
that since all tests are in a common Maven module which depends on both axi om i npl and axi om

dom it is not rare to see DOOM tests that accidentally use the LLOM implementation (which is the
default). The project descriptioninaxi om t est s/ pom xmi indicates that it was the intention to split
the axi om t est s project into several parts and make them part of axi om api , axi om i npl and
axi om dom This reorganization is not complete yetl. For new test cases (or when refactoring existing
tests), the following guidelines should be applied:

1. Teststhat validatethecodeinaxi om api and that do not require an Axiom implementation to execute
should be placedinaxi om api . Thisprimarily appliesto teststhat validate utility classesinaxi omt

api .

2. The code of unit tests that apply to all Axiom implementations and that check conformance to the
specifications of the Axiom API should be added to axi om api and executed in axi om i npl and
axi om dom Currently, the recommended way isto create a base classin axi om api (with suffix
Test Base) and to create subclasses in axi om i npl and axi om dom This makes sure that the
DOOM tests never accidentally use LLOM (because axi om i npl isnot a dependency of axi om

dom.

3. Teststhat check integration with other libraries should beplacedinaxi om i nt egr at i on. Notethat
thisisthe only module that requires Java 1.5 (so that e.g. integration with JAXB2 can be tested).

1See AXIOM-311 [https://issues.apache.org/jira/lbrowse/AXIOM-311].

http://download.eclipse.org/tools/ajdt/46/dev/update
https://alfsch.github.io/eclipse-updates/workspacemechanic
https://issues.apache.org/jira/browse/AXIOM-311
https://issues.apache.org/jira/browse/AXIOM-311

Working with the Axiom source code

4. Testsrelated to codeinaxi om api and requiring an Axiom implementation to execute, but that don't
fall into category 2 should stay inaxi om t est s.

Testing Axiom with different StAX implementations

The following StAX implementations are available to test compatibility with Axiom:

Woodstox
Thisisthe StAX implementation that Axiom uses by default.

Sun Java Streaming XML Parser (SISXP)
Thisimplementation is available as Maven artifact com sun. xm . stream sj sxp: 1. 0. 1.

StAX Reference Implementation
The reference implementation was written by BEA and is available as Maven artifact
st ax: st ax: 1. 2. 0. The homepage is http://stax.codehaus.org/Home. Note that the JAR doesn't
contain the necessary files to enable service discovery. Geronimo's implementation of the StAX API
library will not be able to |ocate the reference implementation unless the following system properties
are set:

j avax. xm . st ream XM.| nput Fact or y=com bea. xnl . st r eam MXPar ser Fact ory
javax. xm . st ream XM_Qut put Fact or y=com bea. xnl . st r eam XM_Cut put Fact or yBase

XL XP-J
“XL XML Processor for Java’ isIBM'simplementation of StAX 1.0 and ispart of IBM's JRE/JDK V6.
Note that due to an agreement between IBM and Sun, IBM's Java implementation for the Windows
platform is not available as a separate download, but only bundled with another IBM product, e.g.
WebSphere Application Server for Devel opers|http://www.ibm.com/devel operworks/downl oads/ws/
wasdevel opers/].

On the other hand, the JDK for Linux can be downloaded as a separate package from the
developerWorks site [https://www.ibm.com/devel operworks/javaljdk/linux/download.html]. There
areversionsfor 32-bit x86 (“xSeries’) and 64-bit AMD. They are available as RPMs and tarballs. To
install the JDK properly on a Debian based system (including Ubuntu), follow the instructions given
in the section called “Installing IBM's JDK on Debian Linux”.

http://stax.codehaus.org/Home
http://www.ibm.com/developerworks/downloads/ws/wasdevelopers/
http://www.ibm.com/developerworks/downloads/ws/wasdevelopers/
http://www.ibm.com/developerworks/downloads/ws/wasdevelopers/
https://www.ibm.com/developerworks/java/jdk/linux/download.html
https://www.ibm.com/developerworks/java/jdk/linux/download.html

Chapter 2. Design

General design principles and goals

Consistent serialization. Axiom supports multiple methods and APIs to serialize an object model

to XML or to transform it to another (non Axiom) representation. This includes serialization to byte or
character streams, transformation to StAX in push mode (i.e. writing toan XMLSt r eamW i t er) or pull
mode (i.e. reading from an XMLSt r eanReader), aswell astransformation to SAX. Therepresentations
produced by these different methods should be consistent with each other. If a given use case can be
implemented using more than one of these methods, then the end result should be the same, whichever
method is chosen.

AXIOM-430 [https://issues.apache.org/jiralbrowse/AXIOM-430] provides an example where this
principle was not respected.

It should be noted that this principle can obvioudly only be respected within the limitsimposed by agiven
API. E.g. if agiven API haslimited support for DTDs, then a DOCT YPE declaration may be skipped when
that API is used.

Li f ecycl eManager design (Axiom 1.3)

ThelLi f ecycl eManager API isused by the MIME handling code in Axiom to manage the temporary
filesthat are used to buffer the content of attachment parts. TheLi f ecycl eManager implementationis
responsible to track the temorary filesthat have been created and to ensure that they are deleted when they
areno longer used. In Axiom 1.2.x, this APl has multiple issues and aredesign is required for Axiom 1.3.

Issues with the Li f ecycl eManager APl in Axiom 1.2.x

1. Temporary files that are not cleaned up explicitly by application code will only be removed when the
JVM stops (Li f ecycl eManager | npl registers a shutdown hook and maintains a list of files that
need to be deleted when the VM exits). This means that temporary files may pile up, causing the file
system to fill.

2. Li f ecycl eManager aso hasamethod del et eOnTi el nt er val that deletes afile after some
specified time interval. However, the implementation creates a new thread for each invocation of that
method, which is generally not acceptable in high performance use cases.

3. One of the stated design goals (see AXIOM-192 [https://issues.apache.org/jira/lbrowse/AXI0OM-192])
of theLi f ecycl eManager APl wastowrap thefilesinFi | eAccessor objectsto “keep track of
activity that occurs on the files’. However, as pointed out in AXIOM-185 [https://issues.apache.org/
jiralbrowse/AXIOM-185], since Fi | eAccessor hasamethod that returns the corresponding Fi | e
object, this goal has not been reached.

4. As noted in AXIOM-382 [https.//issues.apache.org/jira/lbrowse/AXIOM-382], the fact that
Li f ecycl eManager | npl registers a shutdown hook which is never unregistered causes a class
loader leak in J2EE environments.

5. In an attempt to work around the issues related to Li f ecycl eManager (in particular the first
item above), AXIOM-185 [https.//issues.apache.org/jiralbrowse/AXIOM-185] introduced another
class called At t achnment CacheMoni t or that implements a timer based mechanism to clean up
temporary files. However, this change causes other issues:

https://issues.apache.org/jira/browse/AXIOM-430
https://issues.apache.org/jira/browse/AXIOM-430
https://issues.apache.org/jira/browse/AXIOM-192
https://issues.apache.org/jira/browse/AXIOM-192
https://issues.apache.org/jira/browse/AXIOM-185
https://issues.apache.org/jira/browse/AXIOM-185
https://issues.apache.org/jira/browse/AXIOM-185
https://issues.apache.org/jira/browse/AXIOM-382
https://issues.apache.org/jira/browse/AXIOM-382
https://issues.apache.org/jira/browse/AXIOM-185
https://issues.apache.org/jira/browse/AXIOM-185

Design

e The existence of this APl has a negative impact on Axiom's architectural integrity because it
has functionality that overlaps with Li f ecycl eManager . This means that we now have two
completely separate APIs that are expected to serve the same purpose, but none of them addresses
the problem properly.

» Attachment CacheMoni t or automatically createsatimer, but thereisno way to stop that timer.
This means that this API can only be used if Axiom is integrated into the container, but not when
it is deployed with an application.

Fortunately, that change was only meant as a workaround to solve a particular
issue in WebSphere (see APAR PK91497 [http://www-01.ibm.com/support/docview.wss?
rs=180& uid=swg1PK91497]), and once the Li f ecycl eManager AP is redesigned to solve that
issue, At t achnent CacheMoni t or no longer has areason to exist.

6. Li f ecycl eManager isan abstract API (interface), but refersto Fi | eAccessor which is placed
inani npl package.

7. Fil eAccessor usestheMessagi ngExcept i on classfrom JavaMail, although Axiom no longer
relies on this API to parse or create MIME messages.

Cleanup strategy for temporary files

As pointed out in the previous section, one of the primary problems with the Li f ecycl eManager

APl in Axiom 1.2.x is that temporary files that are not cleaned up explicitly by application code (e.g.
using the pur geDat aSour ce method defined by Dat aHandl er Ext) are only removed when the
JVM exits. A timer based strategy that deletes temporary file after a given time interval (as proposed by
At t achnment CacheMoni t or) is not reliable because in some use cases, application code may keep a
reference to the attachment part for along time before accessing it again.

Theonly reliable strategy isto take advantage of finalization, i.e. to rely on the garbage collector to trigger
the deletion of temporary files that are no longer used. For this to work the design of the API (and its
default implementation) must satisfy the following two conditions:

1. All accessto the underlying file must be strictly encapsulated, so that thefileis only accessible aslong
asthereisastrong reference to the object that encapsulates the file access. Thisis necessary to ensure
that the file can be safely deleted once there is no longer a strong reference and the object is garbage
collected.

2. Javaguaranteesthat thefinalizer isinvoked before theinstanceisgarbage collected. However, instances
are not necessarily garbage collected before the JVM exits, and in that case the finalizer is never
invoked. Therefore, the implementation must delete all existing temporary files when the VM exits.
The API design should also takeinto account that someimplementationsof theLi f ecycl eManager
APl may want to trigger this cleanup before the VM exits, e.g. when the J2EE application in which
Axiom is deployed is stopped.

The first condition can be satisfied by redesigning the Fi | eAccessor such that it never leaks
the name of the file it represents (neither as a String nor a File object). This in turn
means that the CachedFi | eDat aSour ce class must be removed from the Axiom API. In
addition, the get | nput St r eam method defined by Fi | eAccessor must no longer return a
simple Fi | el nput St r eam instance, but must use a wrapper that keeps a strong reference to the
Fi | eAccessor, sothat theFi | eAccessor can't be garbage collected while the input stream is till
in use.

To satisfy the second condition, one may want to use Fi | e#del et eOnExi t . However, this method
causes a native memory leak, especially when used with temporary files, which are expected to

http://www-01.ibm.com/support/docview.wss?rs=180&uid=swg1PK91497
http://www-01.ibm.com/support/docview.wss?rs=180&uid=swg1PK91497
http://www-01.ibm.com/support/docview.wss?rs=180&uid=swg1PK91497

Design

have unique names (see bug 4513817 [http://bugs.sun.com/bugdatabase/view_bug.do?bug_id=4513817]).
Therefore this can only be implemented using a shutdown hook. However, a shutdown hook will cause
a class loader leak if it is used improperly, e.g. if it is registered by an application deployed into a
J2EE container and not unregistered when that application is stopped. For this particular case, it is
possible to create a special Li f ecycl eManager implementation, but for this to work, the lifecycle
of this type of Li f ecycl eManager must be bound to the lifecycle of the application, e.g. using a
Ser vl et Cont ext Li st ener . Thisis not always possible and this approach is therefore not suitable
for the default Li f ecycl eManager implementation.

To avoid the class loader lesk, the default Li f ecycl eManager implementation should register the
shutdown hook when thefirst temporary fileis registered and automatically unregister the shutdown hook
again when there are no more temporary files. Thisimpliesthat the shutdown hook isrepeatedly registered
and unregistered. However, since these are relatively cheap operati ons', this should not be a concern.

An additional complication isthat when the shutdown hook is executed, the temporary files may still bein
use. This contrasts with the finalizer case where encapsulation guarantees that the file is no longer in use.
This situation doesn't cause an issue on Unix platforms (whereit is possible to delete afile while it is still
open), but needs to be handled properly on Windows. This can only be achieved if the Fi | eAccessor
keepstrack of created streams, so that it can forcibly close the underlying Fi | el nput St r eamaobjects.

ISince the JRE typically uses an | dent i t yHashMap to store shutdown hooks, the only overhead is caused by Java 2 security checks and
synchronization.

http://bugs.sun.com/bugdatabase/view_bug.do?bug_id=4513817
http://bugs.sun.com/bugdatabase/view_bug.do?bug_id=4513817

Chapter 3. Release process

Release preparation

The following items should be checked before starting the release process:

* Check the dependencies between Javapackagesintheaxi om api module. The org.apache.axiom.util
package (including its subpackages) is specified to contain utility classes that don't depend
on higher level APIs. More precisely, org.apache.axiom.util should only have dependencies on
org.apache.axiom.ext, but not e.g. on org.apache.axiom.om. SonarJ [http://www.hello2morrow.com/
products/sonarj] can be used to check these dependencies. The following figure shows the expected
structure:

Figure 3.1. Package dependencies for r 944680

[£] X, Logical structure of system 'Axiom’
[E] =% My Project
[H} org.apache.axiom
{1 injection
{1 attachments

— {1} -injection
{1 qttachments
o B
\\
#®

i soap
i om
1 mime mime
= Bt util
[Ht stax
i1 debug {4 debug
1 xop i1 xop
i1 dialect = 1} dialect
{1 <types in 'stax'> == (1} <types in 'stax'>
i1 wrapper = {1 wrapper
i} namespace == [{} namespace
4 blob 4} blob
{1 base64 \ ’ I;— {1 base64
1 activation {1 activation
5 B ext
1 activation {1 activation
it io i io
{1 stax “' t stax

g External

In contrast, the following figure shows an earlier trunk version of axi om api with incorrect layering
and cyclic dependencies involving org.apache.axiom.util:

http://www.hello2morrow.com/products/sonarj
http://www.hello2morrow.com/products/sonarj
http://www.hello2morrow.com/products/sonarj

Release process

Figure 3.2. Package dependencies for r939984

[£] X, Logical structure of system 'Axiom’
[E] =% My Project
[H} org.apache.axiom
{1 injection
1 mime
= Bt util
[Ht stax
i1 debug
4 xop
i1 dialect
{1 <types in 'stax'>
i1 wrapper
i} namespace
{1 base64
1 activation

F [F E

41 blob

{1 attachments

1 soap

i om

B ext

i io

1 stax.datahandler
g External & External

0 = = [

(N

' {1 stax.datahandler

The check can also be done using jdepend-maven-plugin [http://mojo.codehaus.org/jdepend-maven-
plugin/]. To do this, execute the following command in the axi om api module:

nm/n j depend: generate

Thenopent arget/sitel/jdepend-report. htm and go thethe "Cycles' section. The report
should not show any package cycles involving org.apache.axiom.mime, org.apache.axiom.util and
org.apache.axiom.ext.

Check that the generated Javadoc contains the appropriate set of packages, i.e. only the public API. This
excludes classes from axi om i npl and axi om domaswell as classes related to unit tests.

Check that all dependencies and plugins are available from standard repositories. To do this, clean the
local repository and execute mvn clean install followed by mvn site.

Check that the set of licensefilesinthel egal directory iscomplete and accurate (by checking that in
the binary distribution, thereis alicensefile for every third party JAR inthel i b folder).

Check that the Maven site conforms to the latest version of the Apache Project Branding Guidelines
[http://apache.org/foundation/marks/pmcs].

Check that the apache- r el ease profile can be executed properly. To do this, issue the following
command:

m/n clean install -Papache-rel ease -Dski pTests=true
Y ou may also execute adry run of the release process:
m/n rel ease: prepare -DdryRun=true

After this, you need to clean up using the following command:

http://mojo.codehaus.org/jdepend-maven-plugin/
http://mojo.codehaus.org/jdepend-maven-plugin/
http://mojo.codehaus.org/jdepend-maven-plugin/
http://apache.org/foundation/marks/pmcs
http://apache.org/foundation/marks/pmcs

Release process

mvn rel ease: cl ean

» Check that the Maven site can be generated and deployed successfully, and that it has the expected
content.

» Complete the release note (sr ¢/ si t e/ mar kdown/ r el ease- not es/ ver si on. nd). It should
include a description of the major changes in the release as well asalist of resolved JIRA issues.

Prerequisites

The following things are required to perform the actual release:

» A PGP key that conforms to the requirement for Apache release signing [http://www.apache.org/dev/
release-signing.html]. To maketherelease process easier, the passphrase for the code signing key should
be configured in ${ user . hone}/. m2/ setti ngs. xm :

<settings>

<profil es>
<profile>
<i d>apache-rel ease</i d>
<properties>
<gpg. passphrase><! -- KEY PASSPHRASE - - ></ gpg. passphr ase>
</ properties>
</profile>
</profil es>

</settings>

e The release process uses a Nexus staging repository. Every committer should have access to the
corresponding staging profile in Nexus. To validate this, logintor eposi t ory. apache. or g and
check that you can seethe or g. apache. ws staging profile. The credentials used to deploy to Nexus
should be added to set ti ngs. xm :

<servers>
<server>
<i d>apache. rel eases. https</i d>
<user nane><!-- ASF usernane --></usernamnme>
<passwor d><!-- ASF LDAP password --></password>
</ server>

</:s.e.rver s>
Release

In order to prepare the rel ease artifacts for vote, execute the following steps:
1. If necessary, update the copyright date in the top level NOTI CE file.
2. Start the release process with the following command:

mvn rel ease: prepare

http://www.apache.org/dev/release-signing.html
http://www.apache.org/dev/release-signing.html
http://www.apache.org/dev/release-signing.html

Release process

When asked for the "SCM release tag or label”, keep the default value (x. y. z).

The above command will create atag in Subversion and increment the version number of the trunk
to the next development version. It will also createar el ease. properti es filethat will be used
in the next step.

3. Perform the release using the following command:
mvn rel ease: perform
Thiswill upload the release artifacts to the Nexus staging repository.

4. Log in to the Nexus repository (https://repository.apache.org/ and close the staging repository. The
name of the staging profile is or g. apache. ws. See http://maven.apache.org/devel opers/rel ease/
apache-rel ease.ntml for a more thorough description of this step.

5. Execute the target/checkout/etc/dist.py script to upload the source and binary
distributions to the development area of the https://dist.apache.org/repos/dist/ repository.

If not yet done, export your public key and append it to https://dist.apache.org/repos/dist/rel ease/ws/
axiom/KEY S. The command to export a public key is asfollows:

gpg --arnor --export key_ id

6. Deletehttps://svn.apache.org/repos/asf/webservices/website/axiom-staging/ if it exists. Create anew
staging area for the site:

svn copy \
htt ps://svn. apache. org/ repos/ asf/ webservi ces/ websi t e/ axi om\
htt ps://svn. apache. org/ repos/ asf/ webservi ces/ websi t e/ axi om st agi ng

This step can be skipped if the staging area has already been created earlier (e.g. to test
@ a snapshot version of the site).

7. Changetothet ar get/ checkout directory and prepare the site using the following commands:

mvn site-depl oy
mv/n scm publ i sh: publ i sh-scm - Dscnpubl i sh. ski pChecki n=t rue

Thestaging areawill bechecked outtot ar get / scnpubl i sh-checkout (relativetot ar get /
checkout). Do asanity check on the changes and then commit them.

8. Start the release vote by sending a mail to dev@s. apache. or g. The mail should mention the
following things:

» Thelist of issues solved in the release (by linking to the relevant JIRA view).
» Thelocation of the Nexus staging repository.

e The link to the source and binary distributions: htt ps: // di st. apache. org/ repos/
di st/ dev/ws/ axi omf ver si on.

« A link to the preview of the Maven site: http://ws.apache.org/axiom-staging/.

If the vote passes, execute the following steps:

https://repository.apache.org/
http://maven.apache.org/developers/release/apache-release.html
http://maven.apache.org/developers/release/apache-release.html
https://dist.apache.org/repos/dist/
https://dist.apache.org/repos/dist/release/ws/axiom/KEYS
https://dist.apache.org/repos/dist/release/ws/axiom/KEYS
https://svn.apache.org/repos/asf/webservices/website/axiom-staging/
http://ws.apache.org/axiom-staging/

Release process

1. Promote the artifacts in the staging repository. See http://maven.apache.org/devel opers/rel ease/
apache-release.ntml for detailed instructions for this step.

2. Publish the distributions:

svn nv https://dist.apache. org/repos/dist/dev/ws/axiomversion \
https://di st.apache. org/ repos/di st/ rel ease/ ws/ axi om

ver si on isthereleaseversion, e.g. 1. 2. 9.
3. Publishthesite:

svn co --depth=i nmedi ates https://svn. apache. org/ repos/ asf/ webservi ces/ website
cd ws-site

svn rm axi om

svn mv axi om stagi ng axi om

svn commi t

It may take several hours before all the updates have been synchronized to the relevant ASF systems.
Before proceeding, check that

» the Maven artifacts for the release are available from the Maven central repository;
 the Maven site has been synchronized to http://ws.apache.org/axionV;
* thebinary and source distributions can be downl oaded from http://ws.apache.org/axiom/downl oad.html.

Once everything is in place, send announcements to users@ws. apache.org and
announce@pache. or g. Since the two lists have different conventions, audiences and moderation
policies, to send the announcement separately to the two lists.

Sample announcement:

Apache Axiom Team is pleased to announce the release of Axiom x.y.z. Thereleaseis
available for download at:

http://ws.apache.org/axiom/downl oad.cgi

Apache Axiom is a StAX-based, XML Infoset compliant object model which supports
on-demand building of the object tree. It supports a novel "pull-through” model which
allows one to turn off the tree building and directly access the underlying pull event
stream. It also has built in support for XML Optimized Packaging (XOP) and MTOM,
the combination of which allows XML to carry binary data efficiently and in a
transparent manner. The combination of these is an easy to use APl with a very high
performant architecture!

Developed as part of Apache Axis2, Apache Axiom is the core of Apache Axis2.
However, it is a pure standalone XML Infoset model with novel features and can be
used independently of Apache Axis2.

Highlightsin thisrelease:

Resolved JRA issues:

10

http://maven.apache.org/developers/release/apache-release.html
http://maven.apache.org/developers/release/apache-release.html
http://ws.apache.org/axiom/
http://ws.apache.org/axiom/download.html

Release process

e [WSCOMMONS-513] Behavior of insertSiblingAfter and insertSiblingBefore is not
well defined for orphan nodes

» [WSCOMMONS-488] The sequence of events produced by OM StAXWrapper with
inlineM TOM=fase isinconsistent

For users@s. apache. org, the subject (“Axiom x.y.z released’) should be prefixed with
“[ANN][Axiom]”, while for announce@pache. org “[ANN]” is enough. Note that mail to
announce@pache. or g must be sent from an apache. or g address.

Post-release actions

» Update the DOAPfile (see et ¢/ axi om r df) and add a new entry for the release.
 Update the status of the release version in the AXIOM project in JIRA.

» Remove archived releases from https://dist.apache.org/repos/dist/rel ease/ws/axiom/.

References

The following documents are useful when preparing and executing the release:

» ASF Source Header and Copyright Notice Policy [http://www.apache.org/legal/src-headers.html]
» Apache Project Branding Guidelines [http://apache.org/foundation/marks/pmcs]

» DOAP Files [http://projects.apache.org/doap.htmi]

* Publishing Releases [http://www.apache.org/dev/rel ease-publishing.html]

11

https://dist.apache.org/repos/dist/release/ws/axiom/
http://www.apache.org/legal/src-headers.html
http://www.apache.org/legal/src-headers.html
http://apache.org/foundation/marks/pmcs
http://apache.org/foundation/marks/pmcs
http://projects.apache.org/doap.html
http://projects.apache.org/doap.html
http://www.apache.org/dev/release-publishing.html
http://www.apache.org/dev/release-publishing.html

Appendix A. Appendix

Installing IBM's JDK on Debian Linux

1

Make surethat f aker oot andj ava- package areinstalled:
apt-get install fakeroot java-package

Download the . t gz version of the JDK from http://www.ibm.com/devel operworks/javaljdk/linux/
download.html.

Edit / usr/ shar e/ j ava- package/i bm j 2sdk. sh and (if necessary) add an entry for the
particular version of the IBM JDK downloaded in the previous step.

Build a Debian package from the tarball:
$ fakeroot nake-jpkg xxxx.tgz

Install the Debian package.

12

http://www.ibm.com/developerworks/java/jdk/linux/download.html
http://www.ibm.com/developerworks/java/jdk/linux/download.html

